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Abstract

Large-ring cyclodextrins (LR-CDs) composed of more than 9 p-glucose units are not well studied. In this study,
LR-CDs composed of 36, 37, 38 and 39 p-glucose units (CD34~CD39) were isolated and purified from a LR-CD
mixture, and their physicochemical properties including aqueous solubility, surface tension, specific rotation and
acid-catalyzed hydrolysis rate were elucidated. The aqueous solubilities of CD3¢~CD53¢ were greater than those of
o-, f-, -CD, CDy, CDjy, CD4 and CDj4. CD3¢~CD39 did not show any surface activity. The acid-catalyzed
hydrolysis of CD3;¢~CD39 was a little faster than that of other LR-CDs (CDy~CD3s). There was no marked
difference in specific rotation or the acid-catalyzed hydrolysis rate among CD34~CD3q. Furthermore, we compared

these findings with the physicochemical properties of o-, -, y-CD and other LR-CDs (CD¢~CDjss).

Introduction

LR-CDs are the cyclic a-1, 4-glucans composed of more
than 9 p-glucose units. Until today, LR-CDs composed
of several hundred p-glucose units have been reported.
Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19),
which produces mainly a-, 8-, y-CD, is widely used as a
4-g-glucanotransferase to form cyclic compounds. Dis-
proportionating enzyme (p-enzyme, EC 2.4.1.25) from
potato, heat resistance amylomaltase (EC 2.4.1.25)
cloned from the thermophilic bacterium Thermus
aquaticus, and glycogen debranching enzyme (GDE, EC
2.4.1.25/EC 3.2.1.33) from yeast (Saccharomyces cere-
visiae) and so on are among the enzymes used for LR-
CD production [1-4]. Furthermore, it was reported that
LR-CDs were produced with the initial action of
CGTase [5]. It is interesting that LR-CDs have different
degrees of polymerization (DP) depending on the en-
zyme: the minimum DP of the LR-CD produced by
amylomaltase, p-enzyme, GDE and CGTase was 22, 17,
11 and 9, respectively.

Recently, there has been an increase in research into
the crystal structure and/or inclusion complex of LR-
CDs composed of more than 9 D-glucose units [6—14].
Additionally, a LR-CD mixture has already been com-
mercialized as an artificial chaperon to refold denatured
proteins, and it is reported that the complexation of
single-wall carbon nanotubes with LR-CD composed of
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12 p-glucose units enables their solubilization in water
[15, 16]. To develop further applications for LR-CDs,
investigations of physicochemical properties would be
indispensable. We have focused on LR-CDs for several
years and already reported the isolation, purification,
physicochemical properties and ability to form inclusion
complexes of LR-CDs with 9~35 p-glucose units
[17-23]. In this study, cyclomaltohexatridecaose (CDj3g),
cyclomaltoheptatridecaose (CDs7), cyclomaltooctatri-
decaose (CDsg) and cyclomaltononatridecaose (CDso)
composed of 36, 37, 38 and 39 p-glucose units were
isolated and purified from a mixture of LR-CDs (The
subscript denotes the number of D-glucose units). Their
physicochemical properties, such as aqueous solubility,
surface tension, specific rotation and acid-catalyzed
hydrolysis rate were elucidated. Furthermore, we com-
pared these findings with the known physicochemical
properties of a-, f-, p-CD and other LR-CDs
(CDy~CDss).

Experiment
Materials

The LR-CD mixture was provided by the Biochemical
Research Laboratory in Ezaki Glico Co., Ltd. (Osaka,
Japan). The preparation of amylomaltase and production
of the mixture were reported in a previous paper [2]. The
procedure used to prepare the LR-CD mixture
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containing DP ranging from 9 to 21 was described in
detail previously [24]. Other chemicals were obtained
from commercial sources and were used without further
purification. Milli-Q Water (Milli-Q Gradient, Millipore
Co., USA) was used in all experiments as purified water.

Isolation and purification of CD3;5~CD39

The purification and testing of the purity of
CD;3¢~CD39 was carried out with HPLC using an Oc-
tadecyl silica (ODS) column (YMC-Pack ODS-AQ, 10
¢x250 mm: for purification, 4.6 ¢x250 mm: for testing
purity, YMC Co. Japan) and amino (NH2) column
(Asahipak NH2P-50, 10 ¢x250 mm: for purification,
4.6 $px250 mm: for testing purity, Showa Denko Co.,
Japan). The conditions and procedure used are shown
in Figure 1.

Identification of CD3s~CD39 by mass and NMR
Spectrometry

Matrix-assisted laser desorption/ionization time-of-
flight mass spectra (MALDI-TOF MS) were measured
in the positive-ion mode with an AXIMA-CFR plus
(Shimadzu Co., Japan) using 2,5-Dihydroxybenzoic acid
as the matrix. The acceleration voltage was 20 kV. The
external standard was insulin. "H-NMR, *C-NMR and
two-dimensional 'H-'*C correlation ('H-'>C COSY)

NMR spectra were recorded on a JNM-LAS500 spec-
trometer (500 MHz for 'H and 125 MHz for '°C, JEOL,
Japan) in 99.8% Deuterium oxide with Tetramethylsi-
lane for 'H and Dioxane for '3C as an external standard
at 50 °C.

Physicochemical properties of CD35~CD3q

The aqueous solubility of the CDs was determined as
follows. Water was carefully added to a glass vessel
containing 50 mg of each CD. The quantity of water
varied progressively from 0.01 to 0.1 mL. The samples
were vigorously shaken for 1 min at 10 min intervals at
25 °C, until the CD had completely dissolved. The total
volume of water added was measured, and the saturated
solubility was calculated. Surface tension measurements
were made on a Wilhelmy surface tensiometer. The
glass vessels used were treated with 20% sulfuric acid
before each measurement. Optical rotation measure-
ments were taken on a polarimeter at 25 °C. The
polarimeter was calibrated with 26 w/v% sucrose solu-
tion before measurements. In the acid-catalyzed
hydrolysis, samples of 30 mg of CDs were dissolved in
1.5 mL of 1 mol/L HCI, and the reaction solution was
heated 50 °C in an incubator. Samples of the reaction
solution were taken at appropriate intervals and neu-
tralized by the addition of 1 mol/L NaOH. The samples
were quantified by HPLC.

LR-CD mixture

1) Column : ODS
Eluent : CH;0H/H,0 = 8/92
Flow rate : 2.0 mL/min
Temperature : 25 °C
Sample conc. : 10 mg/mL
Injection volume : 1.0 mL

Fr.HO-1

Fr.HO-2 Fr.HO-3 Fr.HO-4 Fr.HO-5 Fr.HO-6

2) Column : ODS
Eluent : CH;0H/H,O = 6/94
Flow rate : 2.0 mL/min
Temperature : 30 °C
Sample conc. : 5 mg/mL
Injection volume : 1.0 mL

Fr.HO-3.1 Fr.HO-3.2 Fr.HO-3.3 Fr.HO-3.4 Fr.HO-3.5 Fr.HO-3.6 Fr.HO-3.7

CD36 CD37 CD38

3) Column : NH2
Eluent : CH3;CN/H,O = 50/50
Flow rate : 2.0 mL/min
Temperature : 30 °C
Sample conc. : 4 mg/mL
Injection volume : 2.0 mL

CD39

Figure 1. Summary of the isolation and purification of CD34, CD37, CD3g and CD39 by HPLC.



Results and discussion
Isolation and Purification of CD3;s~CD3g

HPLC with an ODS column can separate branched and
non-branched CDs composed of the same number of D-
glucose units. However, the use of an ODS column
caused a tailing of chromatographic peaks. Accordingly,
isolation and purification were carried out with HPLC
using an ODS column and NH2 column. Figure 2
shows the chromatograms obtained for the LR-CD
mixture (a) and Fr.HO-3 (b) using an ODS column. The
purified Fr.HO-3.2~Fr.HO-3.5 fractions exhibited a
singlet peak on the chromatograms obtained using an
ODS column and NH2 column, respectively (data not
shown). Therefore, the purity of each of these fractions
was >98%.
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Figure 2. Chromatograms of the LR-CD mixture (a) and Fr.HO-3 (b)
obtained with an ODS column.
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Identification of CD35s~CD39

The fractions Fr.HO-3.2~Fr.HO-3.5 were identified
with NMR spectroscopy and mass spectroscopy. The
3C NMR spectra of Fr.HO-3.2~Fr.HO-3.5 indicated
six clear singlet signals attributed to equivalent p-glu-
cose units in solution. These signals were assigned from
the 'H-'C COSY NMR spectra of Fr.HO-3.2~Fr.HO-
3.5 (Figure 3). The results showed similar spectra of
other LR-CDs (CDg~CD3s). The molecular weights of
Fr.HO-3.2~Fr.HO-3.5 determined by MALDI-TOF
MS agreed with the theoretical values of CD34~CD3g
calculated from (C¢H¢Os),, where n is the number of D-
glucose unit (Figure 4).

Physicochemical Properties of CD3s~CD3g

Table 1 summarizes the physicochemical properties of
o-, -, -CD and LR-CDs. CD3¢~CD39 were more sol-
uble than o-, ﬁ-, ’))-CD, CD9, CD10, CD14 and CD26 but
similar in solubility to other LR-CDs. The low aqueous
solubility of CDgy, CD;(, CD14 and CD»4 was caused by
high crystallinity [6-10]. a-, -, »-CD and CDy~CD3q
did not show any surface activity. This result was con-
sistent with the general behavior of sugars. There was no
marked difference in specific rotation among
CD36~CD3g. In homologous compounds with different
molecular weights, the evaluation of molecular rotation
is based on rotation power.
Molecular rotation ( [¢]}) is expressed by:

where M, [¢], t and A are the molecular weight, the
specific rotation, the temperature and the wavelength,
respectively. Figure 5 shows the calculated molecular
rotation of CDs (CDg~CD39). The line was classified
into three-sections using Akaike’s information criteria
(AIC). AIC is widely used for the selection of models in
various fields [25]. If the CDs have no structural dif-
ference, molecular rotation must increase linearly with
the number of D-glucose units. This result showed the
possibility of structural differences (CDg~CD3g). The
crystal structures of a-, -, y-CD, CDy, CDy, CDyq4,
and CD,¢ have already been reported: a-, -, y-CD and
CDy have the familiar perforated bucket structure (The
overall shape of CDy is elliptic), CD;q and CD;4 have
two band flips and a distorted structure, and CD»¢ has
two band flips and a helical structure: a band flip is a
180° inverted glycoside linkage [6-10, 26-30]. There-
fore, it is presumed that the three different straight lines
of o-, ﬂ-, V—CD and CDQ, CD]ONCDZO and CDz]NCD39
have an influence on these structural differences,
respectively.

The half-lives of the ring openings of CDzs~CDj3q
were a little shorter than those of other LR-CDs
(CDy~CDj;s). Those of CDg~CD3 showed a pattern of
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Figure 3. "H-">C COSY NMR Spectrum of Fr.HO-3.3 (CDj3,). Solvent: Deuterium oxide, Temperature: 50 °C.

one every 6 or 7 p-glucose units. Furthermore, the '*C
NMR chemical shifts of C1 and C4 used for binding to
two D-glucose units showed a similar pattern, and a
strong correlation was observed between the half-lives of
ring openings and '*C NMR chemical shifts as shown in
Figure 6. Therefore, we suspected that there is a rela-
tionship between the stability and structure of LR-CDs.
Six or seven D-glucose units compose a relatively stable
helix, so LR-CDs do have a stable structure periodically.
However, since the glycoside linkage is readily attacked
by acid, the half-life decreased as the number of glyco-
side linkages increased. In addition, periodical change of
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half-lives and '*C NMR chemical shifts of LR-CDs is
not clear as the p-glucose unit in the range from CDj5; to
CD39. It was considered that the changes of these half-
lives indicate the relaxation of a distortion of the ring
structure in LR-CD as glycoside linkage increases.
These results are probably related to the structures of
LR-CDs. However, we have great difficulty in explain-
ing their true cause. A more detailed investigation is
required to obtain a clear conclusion.

There are two problems that remain to be solved:
first, mass production is still difficult, and second, the
isolation of LR-CDs is very expensive and troublesome.
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Figure 4. MALDI-TOF MS of Fr.HO-3.5 (CDsg). Matrix: 2,5-Dihydroxybenzoic acid, Acceleration voltage: 20 kV.
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Table 1. Physicochemical properties of CDs

Number of Molecular wight * Aqueous solubility  Surface Specific Half-life of

D-glucose unit . . (g/100 mL) ® tension (mN/m) ®  rotation [a}]z; ring opening (h)°
Theoretical Experimental

o-CD 6 973 973 14.5 72 +147.8 33

p-CD 7 1135 1135 1.85 73 +161.1 29

y-CD 8 1297 1297 23.2 73 +175.9 15

CDy 9 1459 1459 8.19 72 +187.5 4.2
CDyy 10 1621 1621 2.82 72 +204.9 32
CDy, 11 1784 1783 >150 72 +200.8 3.4
CDy; 12 1946 1946 >150 72 +197.3 3.7
CDy3 13 2108 2107 >150 72 +198.1 3.7
CDy4 14 2270 2270 2.30 73 +199.7 3.6
CD5s 15 2432 2432 >120 73 +203.9 29
CDys 16 2594 2594 >120 73 +204.2 2.5
CDy; 17 2756 2756 >120 72 +201.0 2.5
CDg 18 2919 2919 >100 73 +204.0 3.0
CDyy 19 3081 3081 >100 73 +201.0 3.4
CD» 20 3243 3243 >100 73 +199.7 3.4
CDy, 21 3405 3405 >100 73 +205.3 3.2
CDy, 22 3567 3567 >100 73 +197.7 2.6
CD»; 23 3729 3729 >100 73 +196.6 2.7
CDyy 24 3891 3891 >100 73 +196.0 2.6
CD>s 25 4054 4053 >100 73 +190.8 2.8
CDy 26 4216 4215 224 73 +201.4 29
CD»; 27 4378 4375 >125 72 +189.4 2.8
CDog 28 4540 4537 >125 72 +191.2 2.6
CDyy9 29 4702 4699 >125 72 +190.2 2.5
CD3 30 4864 4860 >125 72 +189.1 23
CD5; 31 5026 5023 >125 71 +189.0 2.4
CD3; 32 5188 5185 >125 71 +192.7 2.4
CDs; 33 5351 5349 >125 71 +192.1 2.2
CD34 34 5513 5510 >125 72 +189.6 2.2
CDss 35 5675 5671 >125 71 +193.7 2.1
CD3s 36 5837 5835 > 100 71 +190.6 1.9
CD3; 37 5999 5995 > 100 71 +189.9 1.8
CD;g 38 6161 6158 > 100 71 +190.1 1.9
CD3y 39 6323 6321 > 100 70 +188.1 1.8

% Theoretical masses were calculated as 162.1406xn, where n is the number of glucose unit. Experimental masses of ¢-CD~CD5¢ and CD»;~CD3g
were determined as the average mass and the monoisotopic mass, respectively.

® Observed at 25 °C.

¢ In 1 mol/L HCI at 50 °C.

12000 Overcoming these problems will lead to the further
o development of LR-CDs.
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