Isolation, Purification and Characterization of Large-Ring Cyclodextrins $(CD_{36} \sim CD_{39})$

HIROAKI TAIRA, HIROMASA NAGASE, TOMOHIRO ENDO and HARUHISA UEDA* Department of Physical Chemistry, Hoshi University, 4-41, Ebara 2-chome, 142-8501, Shinagawa-ku, Tokyo, Japan

Key words: akaike's information criteria, isolation, large-ring cyclodextrin, molecular rotation, physicochemical property, purification

Abstract

Large-ring cyclodextrins (LR-CDs) composed of more than 9 D-glucose units are not well studied. In this study, LR-CDs composed of 36, 37, 38 and 39 D-glucose units ($CD_{36}\sim CD_{39}$) were isolated and purified from a LR-CD mixture, and their physicochemical properties including aqueous solubility, surface tension, specific rotation and acid-catalyzed hydrolysis rate were elucidated. The aqueous solubilities of $CD_{36}\sim CD_{39}$ were greater than those of α -, β -, γ -CD, CD₉, CD₁₀, CD₁₄ and CD₂₆. CD₃₆ \sim CD₃₉ did not show any surface activity. The acid-catalyzed hydrolysis of $CD_{36}\sim CD_{39}$ was a little faster than that of other LR-CDs (CD₉ \sim CD₃₅). There was no marked difference in specific rotation or the acid-catalyzed hydrolysis rate among CD₃₆ \sim CD₃₉. Furthermore, we compared these findings with the physicochemical properties of α -, β -, γ -CD and other LR-CDs (CD₉ \sim CD₃₅).

Introduction

LR-CDs are the cyclic α -1, 4-glucans composed of more than 9 D-glucose units. Until today, LR-CDs composed of several hundred D-glucose units have been reported. Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19), which produces mainly α -, β -, γ -CD, is widely used as a 4-α-glucanotransferase to form cyclic compounds. Disproportionating enzyme (D-enzyme, EC 2.4.1.25) from potato, heat resistance amylomaltase (EC 2.4.1.25) cloned from the thermophilic bacterium Thermus aquaticus, and glycogen debranching enzyme (GDE, EC 2.4.1.25/EC 3.2.1.33) from yeast (Saccharomyces cerevisiae) and so on are among the enzymes used for LR-CD production [1–4]. Furthermore, it was reported that LR-CDs were produced with the initial action of CGTase [5]. It is interesting that LR-CDs have different degrees of polymerization (DP) depending on the enzyme: the minimum DP of the LR-CD produced by amylomaltase, D-enzyme, GDE and CGTase was 22, 17, 11 and 9, respectively.

Recently, there has been an increase in research into the crystal structure and/or inclusion complex of LR-CDs composed of more than 9 D-glucose units [6–14]. Additionally, a LR-CD mixture has already been commercialized as an artificial chaperon to refold denatured proteins, and it is reported that the complexation of single-wall carbon nanotubes with LR-CD composed of

12 D-glucose units enables their solubilization in water [15, 16]. To develop further applications for LR-CDs, investigations of physicochemical properties would be indispensable. We have focused on LR-CDs for several years and already reported the isolation, purification, physicochemical properties and ability to form inclusion complexes of LR-CDs with 9~35 D-glucose units [17–23]. In this study, cyclomaltohexatridecaose (CD_{36}), cyclomaltoheptatridecaose (CD₃₇), cyclomaltooctatridecaose (CD_{38}) and cyclomaltononatridecaose (CD_{39}) composed of 36, 37, 38 and 39 D-glucose units were isolated and purified from a mixture of LR-CDs (The subscript denotes the number of D-glucose units). Their physicochemical properties, such as aqueous solubility, surface tension, specific rotation and acid-catalyzed hydrolysis rate were elucidated. Furthermore, we compared these findings with the known physicochemical properties of α -, β -, γ -CD and other LR-CDs (CD₉~CD₃₅).

Experiment

Materials

The LR-CD mixture was provided by the Biochemical Research Laboratory in Ezaki Glico Co., Ltd. (Osaka, Japan). The preparation of amylomaltase and production of the mixture were reported in a previous paper [2]. The procedure used to prepare the LR-CD mixture

^{*} Author for Correspondence. E-mail: ueda@hoshi.ac.jp

containing DP ranging from 9 to 21 was described in detail previously [24]. Other chemicals were obtained from commercial sources and were used without further purification. Milli-Q Water (Milli-Q Gradient, Millipore Co., USA) was used in all experiments as purified water.

Isolation and purification of $CD_{36} \sim CD_{39}$

The purification and testing of the purity of $CD_{36}\sim CD_{39}$ was carried out with HPLC using an Octadecyl silica (ODS) column (YMC-Pack ODS-AQ, 10 $\phi \times 250$ mm: for purification, 4.6 $\phi \times 250$ mm: for testing purity, YMC Co. Japan) and amino (NH2) column (Asahipak NH2P-50, 10 $\phi \times 250$ mm: for purification, 4.6 $\phi \times 250$ mm: for testing purity, Showa Denko Co., Japan). The conditions and procedure used are shown in Figure 1.

Identification of $CD_{36} \sim CD_{39}$ by mass and NMR Spectrometry

Matrix-assisted laser desorption/ionization time-offlight mass spectra (MALDI-TOF MS) were measured in the positive-ion mode with an AXIMA-CFR plus (Shimadzu Co., Japan) using 2,5-Dihydroxybenzoic acid as the matrix. The acceleration voltage was 20 kV. The external standard was insulin. ¹H-NMR, ¹³C-NMR and two-dimensional ¹H-¹³C correlation (¹H-¹³C COSY) NMR spectra were recorded on a JNM-LA500 spectrometer (500 MHz for ¹H and 125 MHz for ¹³C, JEOL, Japan) in 99.8% Deuterium oxide with Tetramethylsilane for ¹H and Dioxane for ¹³C as an external standard at 50 °C.

Physicochemical properties of $CD_{36} \sim CD_{39}$

The aqueous solubility of the CDs was determined as follows. Water was carefully added to a glass vessel containing 50 mg of each CD. The quantity of water varied progressively from 0.01 to 0.1 mL. The samples were vigorously shaken for 1 min at 10 min intervals at 25 °C, until the CD had completely dissolved. The total volume of water added was measured, and the saturated solubility was calculated. Surface tension measurements were made on a Wilhelmy surface tensiometer. The glass vessels used were treated with 20% sulfuric acid before each measurement. Optical rotation measurements were taken on a polarimeter at 25 °C. The polarimeter was calibrated with 26 w/v% sucrose solution before measurements. In the acid-catalyzed hydrolysis, samples of 30 mg of CDs were dissolved in 1.5 mL of 1 mol/L HCl, and the reaction solution was heated 50 °C in an incubator. Samples of the reaction solution were taken at appropriate intervals and neutralized by the addition of 1 mol/L NaOH. The samples were quantified by HPLC.

Figure 1. Summary of the isolation and purification of CD₃₆, CD₃₇, CD₃₈ and CD₃₉ by HPLC.

Results and discussion

Isolation and Purification of $CD_{36} \sim CD_{39}$

HPLC with an ODS column can separate branched and non-branched CDs composed of the same number of Dglucose units. However, the use of an ODS column caused a tailing of chromatographic peaks. Accordingly, isolation and purification were carried out with HPLC using an ODS column and NH2 column. Figure 2 shows the chromatograms obtained for the LR-CD mixture (a) and Fr.HO-3 (b) using an ODS column. The purified Fr.HO-3.2~Fr.HO-3.5 fractions exhibited a singlet peak on the chromatograms obtained using an ODS column and NH2 column, respectively (data not shown). Therefore, the purity of each of these fractions was > 98%.

Figure 2. Chromatograms of the LR-CD mixture (a) and Fr.HO-3 (b) obtained with an ODS column.

Identification of CD₃₆~CD₃₉

The fractions Fr.HO-3.2~Fr.HO-3.5 were identified with NMR spectroscopy and mass spectroscopy. The ¹³C NMR spectra of Fr.HO-3.2~Fr.HO-3.5 indicated six clear singlet signals attributed to equivalent D-glucose units in solution. These signals were assigned from the ¹H-¹³C COSY NMR spectra of Fr.HO-3.2~Fr.HO-3.5 (Figure 3). The results showed similar spectra of other LR-CDs (CD₉~CD₃₅). The molecular weights of Fr.HO-3.2~Fr.HO-3.5 determined by MALDI-TOF MS agreed with the theoretical values of CD₃₆~CD₃₉ calculated from (C₆H₁₀O₅)_n, where n is the number of Dglucose unit (Figure 4).

Physicochemical Properties of $CD_{36} \sim CD_{39}$

Table 1 summarizes the physicochemical properties of α -, β -, γ -CD and LR-CDs. CD₃₆~CD₃₉ were more soluble than α -, β -, γ -CD, CD₉, CD₁₀, CD₁₄ and CD₂₆ but similar in solubility to other LR-CDs. The low aqueous solubility of CD₉, CD₁₀, CD₁₄ and CD₂₆ was caused by high crystallinity [6–10]. α -, β -, γ -CD and CD₉~CD₃₉ did not show any surface activity. This result was consistent with the general behavior of sugars. There was no marked difference in specific rotation among CD₃₆~CD₃₉. In homologous compounds with different molecular weights, the evaluation of molecular rotation is based on rotation power.

Molecular rotation ($[\phi]_{\lambda}^{t}$) is expressed by:

$$\left[\phi\right]_{\lambda}^{t} = \frac{M}{100} \left[\alpha\right]_{\lambda}^{t}$$

where M, $[\alpha]$, t and λ are the molecular weight, the specific rotation, the temperature and the wavelength, respectively. Figure 5 shows the calculated molecular rotation of CDs ($CD_6 \sim CD_{39}$). The line was classified into three-sections using Akaike's information criteria (AIC). AIC is widely used for the selection of models in various fields [25]. If the CDs have no structural difference, molecular rotation must increase linearly with the number of D-glucose units. This result showed the possibility of structural differences ($CD_6 \sim CD_{39}$). The crystal structures of α -, β -, γ -CD, CD₉, CD₁₀, CD₁₄, and CD_{26} have already been reported: α -, β -, γ -CD and CD₉ have the familiar perforated bucket structure (The overall shape of CD_9 is elliptic), CD_{10} and CD_{14} have two band flips and a distorted structure, and CD_{26} has two band flips and a helical structure: a band flip is a 180° inverted glycoside linkage [6-10, 26-30]. Therefore, it is presumed that the three different straight lines of α -, β -, γ -CD and CD₉, CD₁₀~CD₂₀ and CD₂₁~CD₃₉ have an influence on these structural differences, respectively.

The half-lives of the ring openings of $CD_{36} \sim CD_{39}$ were a little shorter than those of other LR-CDs ($CD_9 \sim CD_{35}$). Those of $CD_9 \sim CD_{30}$ showed a pattern of

Figure 3. ¹H-¹³C COSY NMR Spectrum of Fr.HO-3.3 (CD₃₇). Solvent: Deuterium oxide, Temperature: 50 °C.

one every 6 or 7 D-glucose units. Furthermore, the ¹³C NMR chemical shifts of C1 and C4 used for binding to two D-glucose units showed a similar pattern, and a strong correlation was observed between the half-lives of ring openings and ¹³C NMR chemical shifts as shown in Figure 6. Therefore, we suspected that there is a relationship between the stability and structure of LR-CDs. Six or seven D-glucose units compose a relatively stable helix, so LR-CDs do have a stable structure periodically. However, since the glycoside linkage is readily attacked by acid, the half-life decreased as the number of glycoside linkages increased. In addition, periodical change of

half-lives and ¹³C NMR chemical shifts of LR-CDs is not clear as the D-glucose unit in the range from CD_{31} to CD_{39} . It was considered that the changes of these halflives indicate the relaxation of a distortion of the ring structure in LR-CD as glycoside linkage increases. These results are probably related to the structures of LR-CDs. However, we have great difficulty in explaining their true cause. A more detailed investigation is required to obtain a clear conclusion.

There are two problems that remain to be solved: first, mass production is still difficult, and second, the isolation of LR-CDs is very expensive and troublesome.

Figure 4. MALDI-TOF MS of Fr.HO-3.5 (CD₃₈). Matrix: 2,5-Dihydroxybenzoic acid, Acceleration voltage: 20 kV.

	Number of D-glucose unit	Molecular wight ^a		Aqueous solubility	Surface	Specific	Half-life of
		Theoretical	Experimental	(g/100 mL) ^b	tension (mN/m) ^b	rotation $[\alpha]_{D}^{23}$	ring opening (h) ^c
α-CD	6	973	973	14.5	72	+147.8	33
β -CD	7	1135	1135	1.85	73	+161.1	29
γ -CD	8	1297	1297	23.2	73	+175.9	15
CD_9	9	1459	1459	8.19	72	+187.5	4.2
CD_{10}	10	1621	1621	2.82	72	+204.9	3.2
CD_{11}	11	1784	1783	> 150	72	+200.8	3.4
CD_{12}	12	1946	1946	> 150	72	+197.3	3.7
CD_{13}	13	2108	2107	> 150	72	+198.1	3.7
CD_{14}	14	2270	2270	2.30	73	+199.7	3.6
CD_{15}	15	2432	2432	> 120	73	+203.9	2.9
CD_{16}	16	2594	2594	> 120	73	+204.2	2.5
CD_{17}	17	2756	2756	> 120	72	+201.0	2.5
CD_{18}	18	2919	2919	>100	73	+204.0	3.0
CD_{19}	19	3081	3081	> 100	73	+201.0	3.4
CD_{20}	20	3243	3243	>100	73	+199.7	3.4
CD_{21}	21	3405	3405	> 100	73	+205.3	3.2
CD_{22}	22	3567	3567	>100	73	+197.7	2.6
CD_{23}	23	3729	3729	> 100	73	+196.6	2.7
CD_{24}	24	3891	3891	> 100	73	+196.0	2.6
CD_{25}	25	4054	4053	>100	73	+190.8	2.8
CD_{26}	26	4216	4215	22.4	73	+201.4	2.9
CD ₂₇	27	4378	4375	>125	72	+189.4	2.8
CD_{28}	28	4540	4537	>125	72	+191.2	2.6
CD ₂₉	29	4702	4699	>125	72	+190.2	2.5
CD ₃₀	30	4864	4860	>125	72	+189.1	2.3
CD ₃₁	31	5026	5023	>125	71	+189.0	2.4
CD ₃₂	32	5188	5185	>125	71	+192.7	2.4
CD33	33	5351	5349	>125	71	+192.1	2.2
CD ₃₄	34	5513	5510	>125	72	+189.6	2.2
CD35	35	5675	5671	>125	71	+193.7	2.1
CD ₃₆	36	5837	5835	> 100	71	+190.6	1.9
<i>CD</i> ₃₇	37	5999	5995	> 100	71	+189.9	1.8
CD ₃₈	38	6161	6158	> 100	71	+190.1	1.9
CD39	39	6323	6321	> 100	70	+188.1	1.8

^a Theoretical masses were calculated as 162.1406×n, where n is the number of glucose unit. Experimental masses of α -CD \sim CD₂₆ and CD₂₇ \sim CD₃₉ were determined as the average mass and the monoisotopic mass, respectively.

^b Observed at 25 °C.

^c In 1 mol/L HCl at 50 °C.

Figure 5. Dependence of molecular rotation on number of D-glucose unit.

Overcoming these problems will lead to the further development of LR-CDs.

Acknowledgements

The authors are grateful to Dr. T. Takaha and Dr. Y. Terada (Biochemical Research Laboratory, Ezaki Glico Co., Ltd.) for generously providing the LR-CD mixture, Prof. T. Tanimoto (Mukogawa Women's University) for carrying out some of the MALDI-TOF MS measurements, and former graduate students engaged in research into LR-CDs. This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Figure 6. Dependence of half-life of ring opening and ¹³C NMR chemical shifts on number of D-glucose unit.

References

- T. Takaha, M. Yanase, H. Takata, S. Okada, and S.M. Smith: J. Biol. Chem. 271, 2902 (1996).
- Y. Terada, K. Fujii, T. Tanaka, and S. Okada: *Appl. Environ. Microbiol.* 65, 910 (1999).
- M. Yanase, H. Takata, T. Takaha, T. Kuriki, S.M. Smith, and S. Okada: *Appl. Environ. Microbiol.* 68, 4233 (2002).
- T. Takaha and S.M. Smith: *Biotechnol. Genet. Eng. Rev.* 16, 257 (1999).
- Y. Terada, M. Yanase, H. Takata, T. Takaha, and S. Okada: J. Biol. Chem. 272, 15729 (1997).
- 6. T. Fujiwara, N. Tanaka, and S. Kobayashi: Chem. Lett., 739 (1990).
- T. Endo, H. Nagase, H. Ueda, S. Kobayashi, and M. Shiro: *Anal. Sci.* 15, 613 (1999).
- K. Harata, T. Endo, H. Ueda, and T. Nagai: *Supramol. Chem.* 9, 143 (1998).
- O. Nimz, K. Geßler, I. Usón, and W. Saenger: *Carbohydr. Res.* 336, 141 (2001).
- K. Gessler, I. Usón, T. Takaha, N. Krauss, S.M. Smith, S. Okada, G.M. Sheldrick, and W. Saenger: *Proc. Natl. Acad. Sci. USA* 96, 4246 (1999).
- S. Kitamura, K. Nakatani, T. Takaha, and S. Okada: Macromol. Rapid Commun. 20, 612 (1999).
- T. Fukami, A. Mugishima, T. Suzuki, S. Hidaka, T. Endo, H. Ueda, and K. Tomono: *Chem. Pharm. Bull.* 52, 961 (2004).
- K. Tomono, A. Mugishima, T. Suzuki, H. Goto, H. Ueda, T. Nagai, and J. Watanabe: *J. Inclusion Phenom. Macrocyclic Chem.* 44, 267 (2002).
- 14. S. Kitamura: J. Appl. Glycosci. 50, 321 (2003).

- S. Machida, S. Ogawa, S. Xiaohua, T. Takaha, K. Fujii, and K. Hayashi: *FEBS Lett.* 486, 131 (2000).
- H. Dodziuk, A. Ejchart, W. Anczewski, H. Ueda, E. Krinichnaya, G. Dolgonos, and W. Kutner: *Chem. Commun.* 986 (2003).
- H. Ueda, T. Endo, H. Nagase, S. Kobayashi, and T. Nagai: J. Inclusion Phenom. Mol. Recognit. Chem. 25, 17 (1996).
- T. Endo, H. Nagase, H. Ueda, S. Kobayashi, and T. Nagai: *Chem. Pharm. Bull.* 45, 532 (1997).
- T. Endo, H. Nagase, H. Ueda, A. Shigihara, S. Kobayashi, and T. Nagai: *Chem. Pharm. Bull.* 45, 1856 (1997).
- H. Ueda, M. Wakisaka, H. Nagase, T. Takaha, and S. Okada: J. Inclusion Phenom. Macrocyclic Chem. 44, 403 (2002).
- Presented in part at the 20th Cyclodextrin Symposium of Japan, Chiba, Japan, September 2002, Proceeding, pp.156–157.
- 22. Presented in part at the 21st Cyclodextrin Symposium of Japan, Sapporo, Japan, September 2003, Proceeding, pp.119–120.
- 23. Presented in part at the 22nd Cyclodextrin Symposium of Japan, Kumamoto, Japan, September 2004, Proceeding, pp.21–22.
- I. Miyazawa, H. Ueda, H. Nagase, T. Endo, S. Kobayashi, and T. Nagai: *Eur. J. Pharm. Sci.* 3, 153 (1995).
- 25. H. Akaike: IEEE Trans. Autom. Control 19, 716 (1974).
- 26. K. Lindner and W. Saenger: Acta Crystallogr. Sect B 38, 203 (1982).
- 27. K. Lindner and W. Saenger: Carbohydr. Res. 99, 103 (1982).
- 28. K. Harata: Bull. Chem. Soc. Jpn. 60, 2763 (1987).
- W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S.M. Smith, and T. Takaha: *Chem. Rev.* 98, 1787 (1998).
- J. Jacob, K. Geßler, D. Hoffmann, H. Sanbe, K. Koizumi, S.M. Smith, T. Takaha, and W. Saenger: *Angew. Chem. Int. Ed. Engl.* 37, 606 (1998).